Contributions to Model Approximation
نویسندگان
چکیده
This dissertation focuses on the approximation problem of models in the form of linear operators and in the form of polynomial dynamical systems. For approximation of linear operators, Schmidt and Mirsky have shown the existence of an optimal approximant which minimizes the induced Euclidean norm distance between the original operator and all possible lower rank approximant. This result is regarded as an important step in the development of model approximation for dynamical systems. In this thesis, a possibility of extending the result of Schmidt and Mirsky to a general induced norm is discussed. For approximation of dynamical systems, three computational schemes are introduced for several classes of polynomial nonlinear systems. The main contribution of this thesis lies on these three schemes. The first computational scheme is heuristic in nature. The second one is derived based on a reachability approach. These two schemes are mainly to compute a reduced order model for a certain class of polynomial nonlinear systems such that the error model is finite gain L2 stable. The third scheme is an approach to generalize the balanced truncation method of linear systems to a class of polynomial nonlinear systems. The three schemes utilize the power of sum of squares programming which is amenable to computer solution.
منابع مشابه
Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملOptimization of the Inflationary Inventory Control Model under Stochastic Conditions with Simpson Approximation: Particle Swarm Optimization Approach
In this study, we considered an inflationary inventory control model under non-deterministic conditions. We assumed the inflation rate as a normal distribution, with any arbitrary probability density function (pdf). The objective function was to minimize the total discount cost of the inventory system. We used two methods to solve this problem. One was the classic numerical approach which turne...
متن کاملHigh impedance fault detection: Discrete wavelet transform and fuzzy function approximation
This paper presets a method including a combination of the wavelet transform and fuzzy function approximation (FFA) for high impedance fault (HIF) detection in distribution electricity network. Discrete wavelet transform (DWT) has been used in this paper as a tool for signal analysis. With studying different types of mother signals, detail types and feeder signal, the best case is selected. The...
متن کاملSTRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM
Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...
متن کاملModeling thermodynamic properties of electrolytes: Inclusion of the mean spherical approximation (MSA) in the simplified SAFT equation of state
In this work, an equation of state has been utilized for thermodynamic modeling of aqueous electrolyte solutions. The proposed equation of state is a combination of simplified statistical associating fluid theory (SAFT) equation of state (similar to simplified PC-SAFT) to describe the effect of short-range interactions and mean spherical approximation (MSA) term to describe the effect of long-r...
متن کاملDamage identification of structures using second-order approximation of Neumann series expansion
In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007